Doin’ Good: Mobile Makerspace & Education Center

Of the ~200,000 Syrian refugees in Lebanon between the ages of 18 and 25 years, only 4% have access to formal education. Many of the current education programs do not focus on hands-on technical education and are not designed to reach the remote areas, where most refugees live. The innovative approach to these challenges is a mobile makerspace & education center (MMEC). The MMEC will take form as a van equipped with tools and materials that drives to different settlements to teach young refugees craftsmanship skills, for example in woodworking or sewing. This will enable the participants to learn the skills required to seek employment, while at the same time building items they need to improve the living conditions in the camps, such as furniture or toys. The program intends to provide a novel, highly individualized approach to education for underserved populations.


ZestBio is a startup spun out of UC Berkeley that is harnessing the power of biology to convert low value, abundant fruit and vegetable byproducts like citrus peels and sugar beet pulp into high performing plastic bottles and ingredients for dishwasher detergents. This proposal aims to build off recent business and technical advances to scale the improved fermentation technology from bench to pilot scale. At scale, ZestBio aims to make products with superior performance and dramatically reduced environmental footprint compared to existing solutions.


Visualize is a simulated training tool designed to train midwives in Ghana to screen for cervical cancer using the most appropriate and accessible screening method, visual inspection with acetic acid (VIA). Using a simulated tool is a novel approach to improve learning and retention of cervical cancer screening methods in low- and middle-income countries. Leveraging funding from a previous Big Ideas grant, Visualize was co-designed with midwives in Ghana and has gone through multiple design iterations, based on feedback from Ghanaian midwives, trainers, OB/GYN doctors, and healthcare administrators at every stage. Now the team aims to scale Visualize by implementing and testing this simulated training tool as part of VIA training sessions at three urban health training facilities. During these sessions, trainers will use Visualize to teach midwives how to perform VIA. The midwives will then be able to screen patients using VIA.

Trash to Tiles

Ugandans have second or third tier roofs. Trash to Tiles (T3) is repurposing plastic waste in developing nations to produce affordable, quality construction materials such as roofing tiles, pipes, and pavers. By operating in areas with large amounts of plastic waste but no access to recycling, T3 provides a recycling option that currently does not exist. T3’s locally fabricated, precision-controlled machinery fills the gap between capital-intensive, industrialized manufacturers and low-tech NGOs struggling to expand. T3 will scale rapidly and empower local entrepreneurs through a franchise model. In the pilot market of Gulu, Uganda, T3 created prototype roofing tiles and pavers and confirmed market demand through 200 interviews. T3 is currently developing the second iteration machinery and establishing a community plastics collection center to provide a steady supply of plastic waste.

Pit Vidura: Building the “Uber Pool” for Fecal Sludge Management

Pit Vidura Team

In rapidly urbanizing areas, small exhauster truck businesses are unable to keep up with the demand for pit latrine emptying services due to inefficiencies in their operations. Thus, when a latrine fills in most low-income urban areas, manual emptiers use buckets to empty the waste and dump it in the environment. This results in high rates of diseases such as cholera and dysentery. Pit Vidura enables sanitation service providers to grow their businesses by improving the efficiency and profitability of their daily operations. Pit Vidura’s integrated suite of technologies connects truckers to customers, intelligently routes truckers to clusters of customers, and streamlines payments for emptying services. To date (March 2019), Pit Vidura has served over 1,200 households in Kigali with safe emptying services and prevented over 3 million liters of human waste from entering the urban environment.

Respira Labs

Today, Chronic Obstructive Pulmonary Disease (COPD) affects 25 million Americans and costs the healthcare system nearly $50 billion a year. Respira Labs’ COPD management platform is based on a novel technology which instead of merely listening for changes in breathing like other wearable tools, emits sound from small sensors to capture personalized lung volume profiles based on resonance. This allows the technology to detect air trappings (abnormal increase in volume of residual air in the lungs after exhalation) which signals an exacerbation. Intelligent algorithms will flag patients in danger of readmission before acute symptoms arise, enable home-based intervention, cut hospital readmission costs, and reduce provider and payer healthcare bills. Initial customers will include heads of telemedicine who run hospital remote patient monitoring systems and who will champion adoption of the Respira Labs solution. Platform users are primary care physicians, pulmonologists, nurse practitioners, respiratory therapists, and post-hospital discharge COPD patients.

ReEMS: Revolutionized Emergency Medical Services

The Red Cross of Tijuana is a nonprofit medical services provider that covers 98% of the Emergency Medical Services (EMS) requests in Tijuana, Mexico. They pilot only 17 ambulances to serve a population exceeding 1.8 million people. As a result, these conditions escalate emergency vehicle response times and impair EMS performance during everyday operations. Partnered with the Red Cross of Tijuana, ReEMS (Revolutionized Emergency Medical Services) aims to optimize the delivery and management of emergency services in Tijuana and other underserved communities worldwide by introducing cost-effective smartphone and cloud software. Their platform enables emergency medical personnel to make informed decisions during dispatch by providing them with tools to monitor, visualize, and dispatch EMS vehicles in real time. ReEMS expects to decrease EMS vehicle response durations by over 50%, improving access to and reliability of health care for millions of people in underserved communities.

Cloud-based Emergency Response System

Uganda does not have a dedicated emergency response number despite repeated government attempts to set up an adequate and reliable public ambulance service backed by a toll free phone number for communication. This has resulted in slow emergency response times, additional injury and an altogether diminished chance of survival. The Cloud-based Emergency Response System (CERS) enables real time matching of ambulances to patients allowing for maximum utilization of the limited resources that exist. At the same time, it provides a means to circumvent the problem of insufficient resources to setup and man a dedicated emergency call centre with which the Kampala Capital City Authority has been wrestling for some time. Through a smartphone application, users can request and automatically connect with the closest available ambulance. CERS has the potential to impact 40,000 Ugandans who do not make it to the hospital within the “golden hour” by providing a fast, safe and appropriate transport means.

Intelligent Bugs Mapping and Wiping (iBMW): An affordable robot for farmers

This project idea is to develop an intelligent bugs mapping and wiping (iBMW) robot to perform pest population spatial distribution and “surgical precision spraying” for pest wipeout. The iBMW is an affordable (less than $1,000) robot-driven robot, which has a Turtlebot 3 as the robot’s brain and an unmanned ground vehicle serving as the work platform. Based on the design, the robot will be able to recognize and classify the Navel orangeworm by using deep learning neural networks. In addition, several iBMWs can work in the field together in swarming mode day and night, so that it can realize temporal and spatial bug mapping. As a result, mapping can determine which areas are at the greatest risk and whether wiping treatment is needed by iBMWs.