Two-thirds of the world lacks access to basic medical imaging equipment, which is an essential cornerstone for modern medical diagnostics. Due in part to a lack of access to basic x-ray technology in two-thirds of the world, fractures often mean a lifelong disability with devastating socioeconomic complications. In order to mitigate this gap in healthcare, Fractal provides underdeveloped countries and remote settings with an inexpensive, trusted tool for diagnosing and monitoring bone fractures. Fractal sends an acoustic signal through the bone, which is analyzed for sound transmission and frequency changes. The device is currently being tested on patients at the University of California, San Francisco with the aim to facilitate better care and outcomes for patients with plans for further development.
Year: 2019
Sonic Eyewear Project
1.3 million people suffered from blindness in America in 2010 and that number is expected to triple by 2050. Many blind people click with their tongue as a means of soliciting echos from the environment which are processed by their brain and used to locate objects and navigate. While it has been shown to be extremely effective, the technique is difficult to master. The optimal clicking frequency is a critical part of the technique and is a challenge for many to learn. Sonic Eyewear looks like a regular pair of sunglasses that automates the clicking process by generating the optimal frequency of clicks on-demand. It sends forward-looking directional clicks when the user lightly taps her jaw to activate the signal. The technology leverages the power of the human brain to perform echolocation, which competitors have failed to do.
Isochoric Organ Preservation System: A Thermodynamic Approach to Saving Lives
Of the over 114,000 patients in the United States on the national transplant list, twenty die every day while waiting for an organ transplant, and every ten minutes another patient is added. Due to shortcomings in current organ preservation techniques, transplantation is prohibitively expensive, limited geographically to areas with large donor pools, and incredibly inefficient. This is driven by the short window of viability of organs after removal, on the order of four to six hours for hearts and lungs. Extending this viability from a few hours to a few days could transform the accessibility and affordability of organ transplantation, and could prevent up to 30% of all deaths in the US. The team has developed a novel solid-state device based on emergent thermodynamic principles. The isochoric cryopreservation chamber is capable of preserving live organs for long periods of time, which the team believes has the potential to transform the modern medical industry.
Respira Labs
Today, Chronic Obstructive Pulmonary Disease (COPD) affects 25 million Americans and costs the healthcare system nearly $50 billion a year. Respira Labs’ COPD management platform is based on a novel technology which instead of merely listening for changes in breathing like other wearable tools, emits sound from small sensors to capture personalized lung volume profiles based on resonance. This allows the technology to detect air trappings (abnormal increase in volume of residual air in the lungs after exhalation) which signals an exacerbation. Intelligent algorithms will flag patients in danger of readmission before acute symptoms arise, enable home-based intervention, cut hospital readmission costs, and reduce provider and payer healthcare bills. Initial customers will include heads of telemedicine who run hospital remote patient monitoring systems and who will champion adoption of the Respira Labs solution. Platform users are primary care physicians, pulmonologists, nurse practitioners, respiratory therapists, and post-hospital discharge COPD patients.
TyphGen; A Better Point Of Care Diagnostic For Typhoid Fever
Typhoid remains a major public health threat in Uganda contributing to 36% of all fever-related illnesses. It was responsible for the outbreak that affected over 1,000 individuals within Kampala city in 2015. Typhoid is a curable disease with good treatment outcomes if the diagnosis is made early. However, in Uganda there are major challenges with diagnostics. The most widely used test (Widal test) has low accuracy (5.7%) and the World Health Organization has discouraged its use, while the gold standard test (Bacterial culture) takes several days to produce results, is expensive and not readily available. This ultimately leads to delay of appropriate treatment, long waiting hours and inappropriate use of antibiotics that could potentially lead to drug resistance. The Big Idea is to develop TyphGen, a point of care diagnostic that uses DNA detection techniques to diagnose Typhoid in 90 minutes with >90% accuracy at an estimated cost of $12 per test.
Carenea: Redefining the Storage of Cornea Transplants
The standard for corneal storage requires preservation in solutions at 4 degrees Celsius for a maximum of 7-14 days. In developing countries, eye banks struggle with proper refrigeration and the high demand for corneas. They often resort to importing corneas, which are costly and have a shorter shelf life due to transport time. As a result, there is a critical shortage of corneas with 1 cornea for every 70 individuals in need. Micronanobubbles (MNBs) are gaseous vehicles that can carry oxygen within solutions for a prolonged period of time. In transplant solutions, MNBs may meet the oxygen demand of corneal cells, increasing cell survival and extending corneal shelf life. Increased oxygenation may also decrease the need for refrigeration as cells at room temperature, which have higher metabolic demand, would have enough oxygen. If eye banks in developing countries have MNBs, more patients may get the care they need.
Solving the Arsenic Problem in Rural California
About 55,000 people in California rely on arsenic contaminated groundwater as their primary source of drinking water. The small water systems serving these disadvantaged communities lack the technical, managerial, and financial capacity to implement a sustainable solution that would provide arsenic-safe drinking water. Thus, there is a need for an affordable, compact, and continuous-flow technology for these communities exposed to arsenic, a potent carcinogen. Air Cathode Assisted Iron Electrocoagulation (ACAIE) effectively removes high arsenic concentrations from synthetic groundwater to levels below EPA’s Maximum Contaminant Level of 10 parts per billion. Conducting a pilot study at a school site will demonstrate the technical efficacy and robustness of ACAIE. In addition, an educational campaign will increase public awareness and knowledge on the arsenic problem in rural California, empowering rural communities that currently lack their human right to safe drinking water.
ReEMS: Revolutionized Emergency Medical Services
The Red Cross of Tijuana is a nonprofit medical services provider that covers 98% of the Emergency Medical Services (EMS) requests in Tijuana, Mexico. They pilot only 17 ambulances to serve a population exceeding 1.8 million people. As a result, these conditions escalate emergency vehicle response times and impair EMS performance during everyday operations. Partnered with the Red Cross of Tijuana, ReEMS (Revolutionized Emergency Medical Services) aims to optimize the delivery and management of emergency services in Tijuana and other underserved communities worldwide by introducing cost-effective smartphone and cloud software. Their platform enables emergency medical personnel to make informed decisions during dispatch by providing them with tools to monitor, visualize, and dispatch EMS vehicles in real time. ReEMS expects to decrease EMS vehicle response durations by over 50%, improving access to and reliability of health care for millions of people in underserved communities.
Cloud-based Emergency Response System
Uganda does not have a dedicated emergency response number despite repeated government attempts to set up an adequate and reliable public ambulance service backed by a toll free phone number for communication. This has resulted in slow emergency response times, additional injury and an altogether diminished chance of survival. The Cloud-based Emergency Response System (CERS) enables real time matching of ambulances to patients allowing for maximum utilization of the limited resources that exist. At the same time, it provides a means to circumvent the problem of insufficient resources to setup and man a dedicated emergency call centre with which the Kampala Capital City Authority has been wrestling for some time. Through a smartphone application, users can request and automatically connect with the closest available ambulance. CERS has the potential to impact 40,000 Ugandans who do not make it to the hospital within the “golden hour” by providing a fast, safe and appropriate transport means.