Isochoric Organ Preservation System: A Thermodynamic Approach to Saving Lives

Team Members: Alvina Kam, Matthew Powell-Palm, Gideon Ukpai
School: UC Berkeley


Of the over 114,000 patients in the United States on the national transplant list, twenty die every day while waiting for an organ transplant, and every ten minutes another patient is added. Due to shortcomings in current organ preservation techniques, transplantation is prohibitively expensive, limited geographically to areas with large donor pools, and incredibly inefficient. This is driven by the short window of viability of organs after removal, on the order of four to six hours for hearts and lungs. Extending this viability from a few hours to a few days could transform the accessibility and affordability of organ transplantation, and could prevent up to 30% of all deaths in the US. The team has developed a novel solid-state device based on emergent thermodynamic principles. The isochoric cryopreservation chamber is capable of preserving live organs for long periods of time, which the team believes has the potential to transform the modern medical industry.